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1. STATE AND SEQUENCE APPROACH

Music Structure Discovery (MSD) aims at estimating the
underlying structure of a music track using observations of
the audio signal. For this, a given time ti of a music track is
supposed to belong to one of the following categories:

• if ti contains information similar to its adjacent times,
ti is said homogeneous [7] and belongs to a ”state” [8],

• if ti is similar to a foreign time tj , and if the same is
true for ti+l l ∈ [1,λ] (similar to tj+l), we say that the
corresponding segments are repetitions [7]. - If the corre-
sponding times ti+l are similar to their adjacent times than
we have a ”state repetition”. - If this is not the case, we say
that the times ti+l and tj+l belong to a ”sequence” [8] of
length λ which is instantiated at time ti and at time tj .

• if ti is not similar to any other times, ti is a null-time.
This subdivision has lead to two types of approaches to

estimate the music structure: • the state approach, which is
used to detect states (being repeated or not) and • the se-
quence approach, which is used to detect sequences (i.e.
repetitions which are not states). See [8] for more details.
This subdivision if summarized in the table below.

Homogeneous Non-Homog.
Repeated State approach Sequence approach
Non-Rep. State approach Null

Much more MSD systems have been proposed for the
state approach. This is probably due to the fact that this ap-
proach can rely on well-established algorithms for segmen-
tation (novelty measure of [1]), clustering [10] or hidden
Markov models. In the state approach, there is no need to
distinguish between repeated and non-repeated times since
both will end up in states. The state approach is however not
able to deal with non-homogeneous repeated times. This is
the goal of the sequence approach.

The sequence approach first necessitates to distinguish
the repeated times from the null times since only the repeti-
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tions will be used for the structure. Hence, the majority of
the sequence approaches proceed in three successive sepa-
rated stages: (1) extraction of audio observations, (2) detec-
tion of repetitions (sequence-instantiations) (3) connection
of the detected sequence-instantiations to each others in or-
der to estimate the sequences hence the structure.

1.1 Choice between state and sequence approach

To estimate the structure of a track, the choice between a
state and a sequence approach depends on (A) the property
of the music composition/production itself and (B) the audio
observation we have from it. This second point can be sub-
divided into (B.1) the signal observations being used (B.2)
the observation window length. Given a track and its obser-
vations, an automatic way to estimate the most appropriate
approach to be used (among the state and sequence) would
be beneficial. We propose here a measure which allows as-
signing each time of a track to one of the two approaches.

2. MEASURING THE STATE-NESS OF A TIME

As previously said in a MSD system, a given time ti be-
longs to one of the following classes: - homogeneous/ states
(repeated or not), - sequence (which are by definition re-
peated), - null. Corresponding to these classes are specific
observations in the Self Similarity/Distance Matrix (SSM):

• homogenous/state: the local area around ti in the main
diagonal has continuous large values,

• sequence: the time corridor including ti enclose at least
one diagonal stripe,

• nul: neither the state or sequence conditions are ob-
served.

Using this, we propose the ”state-ness” coefficient c(τ)
which represent the possibility to represent a time τ by a
”state”. For this, we first define the sub-matrix along the
main diagonal of length L

E
τ
(ti, tj) = E(ti ∈ [τ, τ + L], tj ∈ [τ, τ + L]) (1)

where E(ti, tj) is the SSM provided by a specific MSD sys-
tem and L is a fixed parameter set to 5s. We then compute
the ratio of the mean value of the block E

τ
over the mean

value of its diagonal. If the block represents a ”state” then
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Figure 1. [Upper part]: Self Similarity Matrix [Lower Part]:
c(τ) for L = 5s and a threshold at 0.9. On track: ”If I
Needed Someone” from The Beatles ”Rubber Soul” album.

the mean value of the block will be close to the mean value
along its diagonal. We also add a constraint related to the
homogeneity of the block by subtracting to the mean value
its standard deviation:

c(τ) =
�
µ(E

τ
)− σ(E

τ
)
�
/
�
µ(diag(E

τ
))
�

(2)

where µ denotes the mean value and σ the standard de-
viation. By experiments, we found that times for which
c(τ) ≥ 0.9 correspond to ”states”. We illustrate this in Fig-
ure 1 where the values of c(τ) indicate two ”states” around
times 70s and 130s. The remaining times of this track either
belong to sequence-instantiations or are null-times.

3. EXEMPLIFYING

We illustrate here the use of the ”state-ness” coefficient c(τ).
For the computation of the SSM we use the system pro-
posed in [9]: 13 MFCCs (excluding the 0th coefficient)
combined with 12 Spectral Contrast Measures and Spec-
tral Valley Measures [5] and 12 Pitch-Class-Profile coeffi-
cients [2]. Each dimension of the features is then modeled
over time (texture window) by its mean value over a slid-
ing window of length P =1s (or P =4s) with a 500ms hop
size. We refer the reader to [9] for more details on the exact
computation of the Self Similarity Matrix from these fea-
tures. We demonstrates here the influence of the choice of
P (using either short-term modeling P = 1s, or long-term
modeling P = 4s) on c(τ) hence on the choice between a
state of sequence approach. For each track of each test-set,
we compute c(τ) for each frame of the track.

Using P = 1s, 6.2% of the frames of the Beatles test-
set [6] have a value c(τ) > 0.9. Hence, the ”sequence”
representation is well-suited for 93.8% of the frames. Fig-
ure 2 illustrates the evolution of c(τ) over tracks (tracks are

Figure 2. Average value of c(τ) over track number (dotted
lines represent µ+σ and µ−σ, vertical lines represent album
separation) for the 180 tracks of the Beatles test-set.

arranged in recording date by album). It is interesting to
note that the average-per-track c(τ) tends to increase over
the years, which could be interpreted as a more important
use of ”states” in the music structure process of The Beatles
over times. The same applied to the RWC-Popular-Music
test-set [4] [3] leads to 3.98% of the frames with c(τ) > 0.9,
hence belonging to states. Using P = 4s, the results change
drastically: the state representation is now dominant among
frames: 58.82% for the Beatles and 58.16% for the RWC
test-set.
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