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ABSTRACT

We propose the novel audio feature structural change for
the analysis and visualisation of recorded music, and argue
that it is related to a particular notion of musical complex-
ity. Structural change is a meta feature that can be calcu-
lated from an arbitrary frame-wise basis feature, with each
element in the structural change feature vector representing
the change of the basis feature at a different time scale. We
describe an efficient implementation of the feature and dis-
cuss its properties based on three basis features pertaining
to harmony, rhythm and timbre. We present a novel flower-
like visualisation that allows us to illustrate the overall struc-
tural change characteristics of a piece of audio in a compact
way. Several examples of real-world music and synthesised
audio exemplify the characteristics of the structural change
feature. We present the results of a web-based listening ex-
periment with 197 participants to show the validity of the
proposed feature.
Keywords: audio, musical complexity, visualisation

1. INTRODUCTION

A piece of music has many qualities that influence how it is
perceived by human beings. These qualities include timbre,
rhythm and harmony. One further, distinct property is the
way in which timbre, rhythm, harmony and other features
are temporally organised into units of various lengths over
the course of the piece, from the smallest note change to the
change between two sections. In this paper we propose an
audio feature aimed at characterising part of this temporal,
structural organisation.

A measure of structural change can be useful for mu-
sic browsing within a track or in collections of music. In
particular, suitable visualisations of the feature can directly
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be used for concise thumbnail-like descriptions of musical
pieces. As a measure of complexity, structural change lends
itself to the exploration of the cultural evolution of music.

Parry [8] provides an overview of research in music com-
plexity and applies several measures of complexity on sym-
bolic music. In the audio domain, Streich [10] gives a com-
prehensive description of existing theories and techniques.
He also discusses many definitions of complexity in science
and their application to music, noting that pure information-
theoretical and mathematical approaches such as entropy
and Kolmogorov complexity can limit the exploration of
human-perceived complexity.

Our approach is inspired by a biological notion of com-
plexity [1] according to which things are defined as more
complex the less likely they could have come into existence
by chance. More specifically, we focus on the aspect of dis-
tinction, the fact that “different parts of the complex behave
differently” [5]. As an example in the domain of audio, con-
sider two ten-second waveforms: one exclusively consisting
of pink noise, the other one consisting of five seconds of
pink noise followed by five seconds of white noise. Clearly,
something must have happened in the middle of the second
waveform that resulted in this change, or, in musical terms,
the second piece must have had a ‘composer’.

In real music, such structural changes happen in all
musical qualities (including rhythm and harmony), and—
equally importantly—they happen on all time scales within
the range of the length of a piece. Our proposed feature
captures these structural changes at several time scales. Our
assumption is that it correlates with the degree to which the
music was composed, an indication of complexity.

We would like to stress that the structural change feature
is unrelated to any instantaneous complexity listeners may
perceive. The timbre of a complete orchestra playing the
same note, or the harmony of a rare jazz chord may sound
complex, but our method exclusively aims at discovering the
quantity of change.

Given an arbitrary audio feature (for example chroma),
calculated for short frames across a piece of music, our pro-
posed method calculates a meta-feature at every frame by
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comparing statistics of the feature in a window before the
current frame with statistics of a window after the current
frame, i.e. a it compares left to right. This method resembles
Foote’s convolution with a checkerboard kernel [2], which
is used for structural segmentation. Our approach focuses
on the amount of change itself as a valid property of mu-
sic. It is more similar in scope to Streich’s tonal complexity
measure [10, Chapter 4], which compares the harmonic con-
tent in one short-term window to that in a longer window.
However, we are concerned with multiple time scales, and
in order to capture the structural changes at different time
scales this calculation is done for several different window
sizes, resulting in a vector-valued feature.

There has been previous research in multi-time-
scale analysis of audio properties, most prominently the
keyscapes proposed by Sapp [9] and extensions thereof [4].
These analyses are aimed at providing information about
what classes of harmonies are present in the signal at dif-
ferent time scales. While a visualisation of these classes
may reveal changes in the signal, our proposed feature is
concerned with the amount of change in any kind of frame-
wise audio feature. In short, our approach combines Foote’s
measure of change with Sapp’s multi-time-scale approach,
and Streich’s application to musical complexity.

The remainder of the paper is structured as follows. Sec-
tion 2 provides a general formulation of our proposed fea-
ture and outlines an efficient implementation. In Section 3
we exemplify the use of the feature with three different ba-
sis features and propose a visualisation that summarises the
resulting structural change features for a whole track. In
Section 5 we provide evidence for the validity of our fea-
ture based on a crowd-sourcing experiment. We discuss our
approach and future work in Section 6.

2. STRUCTURAL CHANGE ALGORITHM

This section formulates the structural change feature in
mathematical terms and provides a description of an effi-
cient implementation.

2.1 Formulation

The formulation of the structural change feature is relatively
straight-forward. Since it is designed as a meta-feature, we
assume that the m-dimensional audio feature vector xi ∈
Rm, i = 1, . . . , N has been calculated for all N frames of a
music track.

At frame i, the idea is to compare a summary
s[i−k+1:i−1] ∈ Rm of the features in the k frames to the
‘left’ to a summary s[i:i+k] ∈ Rm of the features in the k
frames to the ‘right’. 1 For example, in our implementation
below the summary is the mean vector.

1 The dimension of the summary does not have to be the same m as that
of the feature, but we use it here for simplicity.

We also assume that we have a non-negative divergence
function d : Rm × Rm → R+ that assigns a divergence
to a pair of feature summaries, for example the Euclidean
distance or the Jenson-Shannon divergence (as in our im-
plementation, see Section 3.2). Effectively, d will compare
the windows to the left and right of the ith frame.

The characteristic of the structural change feature is that
it samples the divergence of the left and right windows at
different window sizes wj , j = 1, . . . , n. The structural
change feature at the ith frame is the n-dimensional vector
vi =

(
v1

i , . . . , vn
i

)
of the resulting divergences, where

vj
i =


d(s[i−wj+1:i−1], s[i:i+wj ]),

if wj < i < N − wj + 1

0 otherwise.
(1)

While the window widths are arbitrary, it is convenient to
think of them as increasing. For example, one possibility is
to use window widths increasing by powers of 2:

wj = 2j−1. (2)

Using several large windows increases the number of com-
putations, an issue which we address below.

2.2 An efficient implementation strategy

Calculation of the structural change is relatively costly be-
cause 2n summaries s[.:.] have to be calculated at every
frame, two for every window width. Even in the case
where the summary is simply the mean of the feature vec-
tors’ elements over time computations can become expen-
sive: calculating the sums (required for the means) leads to
2mN

∑n
j=1(wj − 1) = 2mnN(W − 1) additions for the

whole track, where W is the average window width. For a
feature with m = 12 dimensions, a track with N = 2500
frames, n = 8 different window widths and an average win-
dow size of W = 100 these are nearly 48 million additions.
However, when the summary function is indeed the mean,
then we can calculate every single summary as just one vec-
tor difference (m differences)

s[i1 : i2] = ci2 − ci1 (3)

of two vectors from the cumulative feature matrix C =
(c0, . . . , cN ). The matrix C can be easily pre-calculated
as

ci =

i∑
i′=0

xi′ , (4)

where we set x0 = 0. Pre-calculating C is cheap, it costs
nN additions, and the additions performed during the struc-
tural change calculations are reduced to 2mnN , i.e. by a
factor of W . We have implemented the algorithm in C++
as a library that can be directly included into Vamp feature
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plugins 2 . The source code for this library can be obtained
from http://github.com/lastfm/.

The window sizes from Equation (2), the mean summary
function and the Jenson-Shannon divergence are used in our
example implementation below, which represents one par-
ticular possibility of configuring the algorithm.

3. IMPLEMENTATION WITH
THREE BASIS FEATURES

We apply the structural change algorithm to three differ-
ent features chosen to represent three qualities of music:
chroma (harmony), rhythm and timbre. This section de-
scribes the design choices we have made to achieve this.

3.1 The Basis Features

For each of the qualities described by the basis features—
chroma, rhythm and timbre—we separately extract the
structural change features (SC) as described in Section 2:
chroma SC, rhythm SC and timbre SC. All features are ex-
tracted from mp3 files sampled at 44100 kHz.

Chroma. Chroma [3] is a 12-dimensional feature of
activity values pertaining to the twelve pitch classes (C,
C], . . . , B), a representation of the instantaneous harmony.
We use an existing Vamp plugin implementation 3 . The
method [6] makes use of the discrete Fourier transform to
obtain a spectrogram, maps every spectral frame to the log-
frequency space (pitch space) via a linear transform and up-
dates the values to adjust for tuning differences; the chroma
vectors are weighted sums of the adjusted pitch space spec-
tral bins. We do not use the approximate transcription
(NNLS) step but otherwise use the default parameters with
a step size of 11025 samples (250 ms).

Rhythm. The fluctuation patterns (FP) feature [7] was
designed to describe the rhythmic signature of musical au-
dio. The FPs are calculated on Hamming-windowed seg-
ments of approximately 3 seconds length, with a step size of
one second (44100 samples), which are further sub-divided
into 256 frames with a length of 512 samples. The main
idea is to use the dB amplitude of these 256 frames at dif-
ferent frequency bands as a time series: the spectrum of this
time series at a particular frequency band is the FP of that
frequency band. We sum the FPs of all frequency bands into
one band in order to eliminate timbre influence.

Timbre. The Mel-spectrum is a warped frequency spec-
trum obtained by taking the discrete Fourier transform of an
audio signal, taking the logarithm of the spectral energies
to obtain dB values, and mapping the spectrum onto Mel-
frequency spaced bins that are linear with respect to human
pitch perception. We use 36 Mel-frequency bins. Since the
feature is extracted together with the FP, the hop size is one

2 http://www.vamp-plugins.org/
3 http://isophonics.net/nnls-chroma

second and the spectral bins are means taken over 256 small
frames (512 samples) across a 3 second window.

3.2 Window, Summary and Divergence Functions

We choose power-of-two window widths (Equation 2). In
order to align time-scales we set j = 1, . . . , 6 for both
rhythm and timbre features, and j = 3, . . . , 8 for the chroma
feature. This means that the structural change feature is 6-
dimensional with window widths (i.e. those of the left or
right windows) are 1, 2, 4, . . ., 32 seconds.

We use the mean summary function s, which is imple-
mented as described in Section 2.2. Since all basis fea-
tures can be interpreted as distributions in their respective
domains, we normalise each summary vector, and use the
Jenson-Shannon divergence as our divergence measure d,
i.e. for two normalised summary vectors s1 and s2

d(s1, s2) =
KL(s1||M) + KL(s2||M)

2
(5)

where M = s1+s2

2 and KL is the Kullback-Leibler diver-
gence given by

KL(x||y) =

n∑
i=1

xi log(xi/yi). (6)

3.3 An Example

We have marked a few interesting aspects of the structural
change features for the song ‘Lucky’ in Figure 1 (light
colours mean high values). The labels a mark two drum
stops, before the first chorus and the first bridge, respec-
tively. Timbre and rhythm SC both show a double bulge,
especially in the three bins of short time scales, one at the
beginning and one at the end of each drum stop. At b only
the timbre SC shows a high value, indicating the beginning
of the second chorus (without a clear rhythm change). La-
bel c marks a part with little musical movement: no actual
chord changes, but lots of sound variation, including spo-
ken voice excerpts: this is reflected in relatively low chroma
SC activity, but relatively high timbre SC activity. Label d
marks a calm bridge section (no drums), followed by the
key change that leads into the next chorus. Two clear timbre
SC peaks show the boundaries of the bridge, and the high
chroma long-scale SC values reflect the key change.

4. TRACK-LEVEL SUMMARISATION AND
VISUALISATION

In some contexts it is useful to be able to summarise the
structural change of a piece of music, for example, sum-
marising the feature for further processing by machine
learning algorithms. Summarisation is also necessary to
generate track-level visualisations, such as the Audio Flow-
ers, which we present below.

491



Poster Session 4

a a b c d

tim
e 

sc
al

e
tim

e 
sc

al
e

tim
e 

sc
al

e

     time

chroma SC

timbre SC

rhythm SC

Figure 1: Structural change in the three basis features for the song ‘Lucky’ as performed by Britney Spears. See Section 3.3.

4.1 Statistics

The most straight-forward way of summarising the SC
frames is to take the mean average over all structural change
feature frames of the whole piece, resulting in one mean fea-
ture vector. In cases where structural change is concentrated
in a small part of the piece of music, however, the mean can
be misleading because it suggests that the rate of change in
the whole piece is relatively high. The median is a more ro-
bust average statistic, since it discards such outliers. We use
both because mean, median and their difference are interest-
ing properties of a piece of music.

We extracted the structural change features for our three
basis features from mp3 files of 17,116 pieces of popular
from the British singles charts between 1951 and 2011, then
averaged them in two ways by taking the mean and median
over time. Since we have six window widths, three basis
features and two averages for each of the combinations, each
of the tracks has 6 × 3 × 2 = 36 values. For each of the
36 dimensions we apply quantile normalisation (normalised
ranking) to spread values within the interval [0, 1] with re-
spect to the whole collection of songs.

4.2 Audio Flowers

In order to turn the 36 values for each track into an intuitive
visual representation (examples in Figure 3), we treat each
musical quality separately to create a flower ‘petal’: red for
rhythm, green for harmony, and blue for timbre. In any of
the three petals, the central, opaque part visualises the nor-
malised median values, the translucent part corresponds to
the normalised mean. The values closest to the centre of the
Audio Flower represent short time scales, the values near
the tips of the petals represent the longest time scale. The
plot is realised by calculating a 100-point smoothed inter-

polation of the six values. We chose the median to be used
for the opaque part because it is a robust average of a track’s
structural change and is likely to be the most reliable mea-
sure. The translucent part is only visible where the mean ex-
ceeds the median value. This happens in cases when strong
structural changes happen, but on a relatively short section
of a track, as we will illustrate below.

Figure 2 shows the results for a few artificially con-
structed pieces of audio. Figure 2a illustrates 300 seconds of
pink noise, Figure 2b 150 seconds of pink noise followed by
another 150 of white noise. The white noise Audio Flower
shows virtually no sign of structural change, while the Au-
dio Flower of the mixed pink and white noise file has a slight
bulge indicating a rare long-term change in timbre (the cor-
responding rhythm value is slightly raised, too). This in-
dication of ‘composedness’, or complexity, is exactly what
we would expect in that situation (cf. Section 1). The other
two Audio Flowers are closer to real music: Figure 2c rep-
resents a single chord, played on a piano but with two differ-
ent rhythms alternating at a relativley long time scale of (24
seconds). As we could expect, here too, harmonic change is
virtually absent, and the high values towards the tip of the
red rhythm petal reflects the long-term rhythm changes. The
change in timbre that comes with the rhythm change can be
observed, too. Figure 2d was produced from a piece of mu-
sic with the same rhythm structure, but instead of a single
chord we used a cadence, i.e. a more complex chord pattern.
The Audio Flower represents this added complexity as high
values towards the origin of the green harmony petal, while
the rest of the flower remains virtually unchanged.

Figure 3a shows the Audio Flower of the song ‘Lucky’,
which we have already treated in Figure 1. The key change
happens only once during the piece, indicated through the
high levels of chroma SC at d in Figure 1. Due to this ‘out-
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(a) pink noise (b) pink noise, then white noise

(c) chord, changing rhythm (d) cadence, changing rhythm

Figure 2: Artificial examples: (a) pink noise, (b) pink noise
followed by white noise, (c) single major piano chord with
different rhythmic sections, (d) repeated major cadences
with different rhythmic sections.

lier’ the normalised median is smaller than the normalised
mean at long time scales—the translucent part of the Audio
Flower becomes visible.

Figure 3b depicts the Audio Flower of the song ‘Smells
Like Teen Spirit’ as recorded by the band Nirvana. The most
striking aspect of this song is the mushroom-shaped timbre
petal (blue). This is common in songs that are organised
alternating soft and loud sections.

In comparison, the timbre petal of the Audio Flowers in
Figures 3c and 3d is decidedly thicker, especially at shorter
timescales (towards the origin). In fact, the shape of tim-
bre and chroma petals is very similar between these two
Audio Flowers. This is not surprising because they are in-
deed two renditions of the same song ‘Time After Time’,
one by Cyndi Lauper, one by Ronan Keating. The shape of
the rhythm petal is, however, quite dissimilar, which sug-
gests their approaches to rhythm are different. A gallery
of further examples can be found at http://last.fm/
playground/demo/complexity.

5. INTERNET-BASED EXPERIMENT

Finding evidence to support our hypothesis that our features
correspond with human perception of structural change is
hard because unless the listeners are musicians we cannot

(a) Lucky (b) Smells Like Teen Spirit

(c) Time After Time (Lauper) (d) Time After Time (Keating)

Figure 3: Audio Flowers for the songs (a) ‘Lucky’ (as per-
formed by Britney Spears), (b) ‘Smells Like Teen Spirit’,
and two renditions of ‘Time After Time’, (c) by Cyndi Lau-
per, (d) by Ronan Keating.

assume that they even think in terms of harmony, rhythm
or timbre. In order to test whether any correlation can be
observed we set up an informal experiment on an Internet
page. A participant would randomly be given two 30 second
sound excerpts from our collection of chart singles and was
then asked to decide which changed more in terms of one
of our three basis features. The tracks were chosen to dif-
fer in their amount of structural change: the average of the
normalised median structural change values 4 for one track
was high (> 0.7) and that of the other one was low (< 0.3).
The web page clearly states that we look for change and di-
versity. Upon casting their rating the listener is shown the
Audio Flowers of the two songs in question as a reward and
is told which of the two our analysis deemed more change-
able. The rating was realised as a set of three radio-buttons
(first track, second track and a third one labelled ‘not sure’).
We had no control over whether the participants listened to
the tracks before voting.

At the time of writing we have collected 1428 votes from
401 raters with an mean number of 3.9 ratings (median: 2).
We analysed the 1165 ratings of the 197 participants who
voted at least three times. There is moderate agreement be-
tween user ratings and our high and low classes: in 61.4 %

4 Taking into account the short duration of the excerpts, only the first
four dimensions of the features were used in the structural change value.
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of all cases users agreed with the automatic analysis. Test-
ing against the null hypothesis of users randomly choosing
an answer, we obtain a very low p value of p < 10−14,
i.e. we are very confident that the participants’ choice is not
random. This also applies to the three qualities separately:
users agree with rhythm SC (60.0%, p < 10−3), chroma SC
(63.3%. p < 10−6) and timbre SC (60.8%, p < 10−4).

In all cases the agreement is not very high, but at this
stage we can only speculate about the causes: our feature
might express something different from what we intended
or what participants understood; the un-controlled nature
of the experiment may have led participants to randomly
choose their rating; the participants may not have had the
necessary musical experience to provide meaningful ratings.
However, the fact that we found significant agreement for all
three features separately suggests that the structural change
feature capture musical qualities listeners can relate to.

6. DISCUSSION AND FUTURE WORK

Our implementation presented in Section 3 is only one way
of using the structural change feature, and many can be
added by using alternatives for the window width func-
tion, left/right summary function and divergence function
presented here. We are particularly interested in exploring
different divergence functions, such as inverse correlation
and Euclidean distance (see also [10, Chapter 4]). Using
a different divergence function will allow us to use features
that are not necessarily non-negative, such as mel-frequency
cepstral coefficients (MFCCs) or other chroma mappings.

The proposed feature will allow classic Music Informa-
tion Retrieval tasks (such as cover song retrieval and genre
classification) to access a semantic dimension that is not
covered by existing audio features, and hence may lead to
improvements in these areas.

Finally, we hope that future studies will reveal how the
structural change feature is related to musical complexity as
perceived by humans.

7. CONCLUSIONS

We have proposed the novel audio feature structural change
for the analysis of audio recordings of music. The fea-
ture can be regarded as a meta-feature, since it measures
the change of an underlying basis feature at different time
scales. As part of our proposal we have presented the gen-
eral algorithm and an efficient implementation strategy of a
special case. We have implemented the feature with three
different basis features representing chroma, rhythm and
timbre. Analysing more than 17,000 tracks of popular mu-
sic allowed us to find a meaningful normalisation to the fea-
ture values. Based on this normalisation we have introduced
a track-level visualisation of structural change in chroma,
rhythm and timbre. Several of these visualisations, Audio

Flowers, have been presented to illustrate the features’ char-
acteristics and show that interpreting the amount of struc-
tural change as musical complexity is possible. We con-
ducted a informal web-based experiment whose results sug-
gest that our proposed feature correlates with the human per-
ception of change in music.
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