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ABSTRACT

This paper investigates the use of musical priors for
sparse expansion of audio signals of music on overcom-
plete dictionaries taken from the union of two orthonor-
mal bases. More specifically, chord information is used to
build a structured model that takes into account dependen-
cies between coefficients of the decomposition. Evaluation
on various music signals shows that our approach provides
results whose quality measured by the signal-to-noise ratio
corresponds to state-of-the-art approaches, and shows that
our model is relevant to represent audio signals of Western
tonal music and opens new perspectives.

1. INTRODUCTION

We propose in this paper a new approach for structured
sparsedecomposition of a music signal in an overcomplete
time-frequency dictionary. Starting from existing methods
that are based on physical signal properties, we propose to
incorporate musical priors in order to built signal represen-
tations that are more suitable to music. For this, we take
advantage of the recent works that have been done on chord
estimation in the context of music content processing.

The problem of representing an audio signal using a
time-frequency dictionary has been given a lot of atten-
tion these last few years. The specificity of music audio
signals is that, very often, several types of components are
superimposed, as for instance tonal components (the par-
tials of the notes) and transients (the attacks of the notes).
These various components may have significantly differ-
ent behaviors. For instance fast varying transient require
short analysis window whereas low varying tonals require
long windows. Thus, they cannot be represented within the
same basis. This is whyhybrid models allowing a simul-
taneous representation of different components have been
proposed [4,12,17,22].
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Among the various existing transforms, the modified
discrete cosine transform (MDCT) [15] is a standard choice
for the bases [6,14]. Following these approaches, we con-
sider in this work a dictionary built as the union of two
MDCT bases with different time-frequency resolutions. The
narrow band basis - with long time resolution - is used to
estimate the tonal parts of the signal, and the wide band
basis - with short time resolution - is used to estimate the
transient parts. Such a dictionary is chosen overcomplete,
and thus the expansion of the signal with respect to the
dictionary is not unique.Sparsitymay be used as a selec-
tion criterion for finding the expansion coefficients, in the
sense that only a few coefficients of the decomposition of
the signal on the bases are significantly nonzero. The sig-
nal can thus be well approximated by a limited number of
coefficients. This problem is often referred to assparse
regression.

A common approach to find a sparse expansion of sig-
nals in overcomplete dictionaries consists of minimizing
the ℓ1 norm of the expansion, and is known asbasis pur-
suit [1], or LASSO [21]. Various methods have been also
proposed: they include variational approaches [13], prob-
abilistic approaches [14], greedy methods, such as match-
ing pursuit algorithms [2,16], or Bayesian formulations as
for instance EM-based algorithms [9]. In the framework of
Bayesian variable selection, MCMC (Markov chain Monte
Carlo) type approaches that consider a dictionary constructed
as the union of two orthonormal bases have been proposed
[5, 7]. One of the main advantages of the MCMC tech-
niques is their robustness because they scan the whole of
the posterior distribution and thus are unlikely to fall into
local minima. However, this is done at the expanse of high
computational cost.

In order to fully exploit the dual nature of audio music
signals mentioned above, some approaches consider de-
pendencies between significant coefficients. In the time-
frequency plane, the partials of the notes will generate hor-
izontal lines localized in frequency, whereas the attacks of
the notes and the percussive sounds will generate vertical
lines localized in time. Ideally, this structure should be re-
flected in the signal decomposition. This is why we are in-
terested in finding a signal approximation that is not only
sparse, but also structured. Previous approaches that use
unstructured priors, such as Bernoulli models have shown
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that they generate isolated coefficients with high ampli-
tude in both bases [7, 14]. These components do not have
any musical meaning and are usually perceived as “musi-
cal artifacts” or “musical noise” in the reconstructed sig-
nal. Considering dependencies between atoms coefficients
and using structured priors allows reducing the number of
such undesirable components. Various approaches have
been proposed for introducing dependencies between co-
efficients in the time-frequency domain. Structures can
be modeled directly in the coefficients themselves, such as
in [13]. However, dependencies are often introduced in the
time-frequency indices, rather than directly in the coeffi-
cients themselves. Among existing approaches, frequency
persistency properties of the transient layer can be modeled
using structured Bernouilli models [14]; persistency along
the frequency axis is favored using Markov models [17];
in [8], structural constraints on the coefficients that rely
on physical properties of the signal are imposed for both
layers, using two types of Markov chains. It results in a
“horizontal structure” for the tonal layer and a “vertical
structure” for the transient layer. Up to now, additional
structure constraints that have been added rely on physi-
cal properties of the signal. The originality of our work is
that we propose to incorporate priors that are based on mu-
sical information. Relying on the model presented in [8]
within a Bayesian framework, we build a structured model
for sparse signal decomposition that incorporates musical
priors for tonal layer modeling. Our model is particularly
well adapted to the tonal structure of signals and fits the
intrinsic nature of Western tonal music.

Sparse representations of signals have recently proved
to be useful for a wide range of applications in signal pro-
cessing, such as denoising [6], coding and compression [3,
20] or source separation [7]. Here, we focus on the task of
denoising an excerpt of musical audio. Our approach pro-
vides results whose quality in term of signal-to-noise ratio
(SNR) corresponds to state-of-the-art approaches, while
better reflecting the nature of music audio signal.

The structure of the paper is as follows. First, in Section
2, we present our model for sparse signal decomposition
on hybrid dictionaries that incorporates musical priors; our
main contribution is described in part 2.3. We briefly ad-
dress the problem of parameters estimation in Section 3. In
Section 4, we present and discuss the results of our model.
Conclusions and perspectives for future works are given in
Section 5.

2. SIGNAL MODEL

This section introduces first the mathematical model used
to represent the audio signal, and then defines the priors
chosen in a Bayesian context. Particularly, the new musical
prior based on thechromagramis exposed in section 2.3.

2.1 Model

In this part, we describe our model for signal decompo-
sition with sparse constraint on ahybrid dictionary of ele-
mentary waveforms oratoms. The dictionary is constructed

as the union of two orthonormal bases with different time-
frequency resolution that account respectively for the tonal
and the transient parts of the signal. We rely on the model
proposed in [8] and we consider a tree-layer signal model
of the form:signal = tonals + transients + residual.

Let V = {vn, n = 1, . . . , N} and U = {um, m =
1, . . . , N} be two MDCT bases ofRN with respectively
long frameℓton to achieve good frequency resolution for
tonals and short frameℓtran to achieve good time resolu-
tion for transients. The MDCT is a bijective linear trans-
form and we notenton = N

ℓton

andntran = N
ℓtran

the num-
ber of frames for each basis (see Fig. 2). Here,n andm

are time-frequency indexes and will be denoted in the fol-
lowing n = (q, ν) ∈ [1, ℓton] × [1, nton] or n = (q, ν) ∈
[1, ℓtran]× [1, ntran].

We denoteD = V ∪U the dictionary made as the union
of these two bases.D is overcomplete inRN , and any
x ∈ R

N admits infinitely many expansions in the form:

x =
X

n∈I

αnvn +
X

m∈I

βmum + r (1)

whereI = {1, . . . , N}, αn andβm are the expansion co-
efficients andr represents the noise term.

We are interested in sparse signals, i.e. signals that may
be written as:

x =
X

λ∈Λ

αλvλ +
X

δ∈∆

βδuδ + r (2)

whereΛ and ∆ are small subsets of the index setI =
{1, . . . , N} that account for the significant coefficients. In
what follows, they will be referred to assignificance maps.

We introduce two indicator random variablesγton,n and
γtran,m corresponding to the significance mapsΛ and∆:

γton,n =



1 if n ∈ Λ
0 otherwise γtran,m =



1 if m ∈ ∆
0 otherwise (3)

We can therefore rewrite Eq. (2) as:

x =
X

n∈I

γton,nαnvn +
X

m∈I

γtran,mβmum + r (4)

2.2 Coefficient Priors

We assume that, conditional upon the significance mapsΛ
and∆ , the coefficientsαn andβm are independent zero-
mean normal random variables:

p(αn|γton,n, σton,n) = (1− γton,n)δ0(αn) + (5)

γton,nN (αn|0, σ2
ton,n)

p(βm|γtran,m, σtran,m) = (1− γtran,m)δ0(βm) +

γtran,mN (βm|0, σ2
tran,m)

whereδ0 is the Dirac delta function and the variancesσton,n

andσtran,m are given a conjugate inverted-Gamma prior.
Sparsity is enforced whenγn = 0 (resp.γm = 0). In this
case, the coefficientsαn (resp.βm) are set to0.
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2.3 Indicator Variable Priors

The significance mapsΛ and∆ are given structured priors.
The one corresponding to the tonal basis encodes musical
information while the one corresponding to the transient
basis is based on physical properties of the signal. Both of
them are “vertical” structures.

2.3.1 Model for Tonals

For the significance map corresponding to the tonals, we
propose to model dependencies between indicator variables
using musical information. Let us assume that we know
the score corresponding to the musical excerpt and that,
for each frameq ∈ {1, . . . , nton}, we know which notes
the signal is composed of.

Here, we want to work directly on audio. However, the
symbolic transcription (the score) of a piece of music is
not always available, especially in musics such as jazz mu-
sic where there is a large part devoted to improvisation. In
addition, algorithms that extract a transcription from an au-
dio signal, such as multi-f0 estimation algorithms [24], are
still limited and costly. However, numbers of recent works
have shown that it is possible to accurately extract robust
mid-level representation of the music, such as the chord
progression [18].

We propose to give a musical prior to the indicator vari-
ables using musical information obtained from the chord
progression. The output of a chord estimation algorithm
consists in a progression of chords chosen among a given
chord lexicon. Each chord may be characterized by the
semitone pitch classes or chroma that correspond to the
notes it is composed of. Since their introduction in 1999,
Pitch Class Profiles[10] or chroma-based representations
[23] have become common features for estimating chords.
They are traditionally 12-dimensional vectors, with each
dimension corresponding to the intensity associated with
one of the 12 semitone pitch classes (chroma) of the West-
ern tonal music scale, regardless of octave. The succession
of chroma vectors over time is known aschromagram.

In general, the chord lexicon does not distinguish be-
tween any possible combination of simultaneous notes but
is typically reduced to a set of chords of 3 or 4 notes. The
number of notes composing the chords will be denoted by
Nc in the following. Here, we limit our chord lexicon to
the24 major and minor triads (Nc = 3). The method we
propose could be extended to larger dictionaries.

The chord progression does not provide an exact tran-
scription of the music. For instance, passing notes are
in general ignored, missing notes in the harmony may be
added. Moreover, the chords are estimated regardless of
octave. However, experiments show that the provided mu-
sical information is sufficient enough to build musically
meaningful priors.

Given a fixed frame indexq, let {pc
k}k=1,...,Nc

denote
the semitone pitch-classes (chroma) corresponding to the
estimated chordcq. Let also{pMDCT

ν }ν=1,...,ℓton
denote

the semitone pitch classes corresponding to each MDCT
bin.

Assuming a perfect tuning ofA = 440Hz, a MDCT bin
of frequencyfν is converted to a chromapMDCT

ν by the
following equation:

pMDCT
ν = (12 log2

fν

440
+ 69) (mod12) 1 (6)

The indicator variables{γton,(q,ν)}ν=1,...,ℓton
are given

the following membership probabilities:

PΛ{γton,(q,ν) = 1} (7)

=

{

pton if ∃k ∈ [1, Nc] | pMDCT
ν = pc

k

1− pton otherwise

where0 ≤ pton ≤ 1. The significance maps correspond-
ing to the tonal layer should reflect the tonal content of the
audio signal. In practice, the valuepton will be close to
1 (in our experiments,pton = 0.9) so that atoms corre-
sponding to the notes that are played are given high prior.
The significant map for the tonal layer corresponding to
theGlockenspielaudio signals of our test-set is illustrated
in Fig. 1. A set of atoms is selected at each frame accord-
ing to the notes of the (chord) transcription, regardless of
octave. For instance all atoms{B1, B2, . . .} correspond-
ing to the semitone B are selected when the first B note
of theGlockenspielis sounded. The significance maps are
given structures of “tubes” that have a musical meaning.
Note that we provide here a “vertical structure” for tonals.

Structured significance map without harmonics
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Structured significance map with harmonics
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Figure 1. Structured significance map for theGlockenspiel
using musical information. Left: only notes composing
the chords are considered. Right: higher harmonics are
considered. The transcription is indicated in the bottom.

Two additional components may be added to improve
the model.
• First, the instruments may have been tuned according to
a reference pitch different from the standardA4 = 440Hz.
In this case it is necessary to estimate the tuning of the
track and Eq. (8) becomes:

pMDCT
ν = (12 log2

fν

Aest

+ 69) (mod12) (8)

whereAest denotes the estimated tuning, here obtained
with the method proposed in [19].

1 a (modb) denotes the mathematical operatormodulo, the remainder
whena is divided byb
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• Secondly, higher harmonics may be considered in the
model. Each note produces a set of harmonics that results
in a mixture of non-zero values in the chroma vector corre-
sponding to the chord. For instance a C note will produce
the set of harmonics{C−C−G−C−E−G− . . .}. They
can be considered in the significance maps, as illustrated in
the right part of Fig. 1. Here we take into account the first
6 harmonics of the notes2 .

2.3.2 Model for Transients

Following [8], persistency in frequency of the time-frequency
coefficients corresponding to transient layer is modeled giv-
ing a vertical prior structure to the indicator variables in
the second basis. Given a frame indexq, the sequence
{γtran,(q,ν)}ν=1,...,ℓtran

is modeled by a two-state first-
order Markov chain with probabilitiesPtran,00 andPtran,11,
assumed equal for all frames, and with learned initial prob-
ability πtran. The model is illustrated in Fig. 2.

Figure 2. Vertical model for transients. Adapted from [8].

2.4 Residual

The residual signalr is modeled as a Gaussian white noise,
with varianceσ2, which is given an inverted-Gamma con-
jugate prior.

3. MCMC INFERENCE

Following [8], the posterior distribution of the set of pa-
rameters and hyperparameters of the model, denoted byθ,
is sampled from using a Gibbs sampler [11], which is a
standard Markov Chain Monte Carlo (MCMC) technique
that simply requires to iteratively sample from the poste-
rior distributions of each parameter upon datax and the
remaining parameters.

The Minimum Mean Square Estimates (MMSE) of the
parametersθ can then be computed from the Gibbs sam-
ples{θ(1), θ(2), . . . , θ(K)} of the posterior distributionp(θ|x):

θ̂MMSE =
∫

θp(θ|x)dθ (9)

≈ 1
K

∑K

k=1 θ(k) (10)

2 We limit the number of considered harmonics to 6 because manyof
the higher harmonics, which are theoretically whole numbermultiples of
the fundamental frequency, are far from any note of the Western chro-
matic scale. This is especially true for the 7th and the 11th harmonics.

The MAP estimate can be computed by thresholding the
values of the MMSE. In [8], all the values of the MMSE
lower that0.5 are threshold to0 and all the values greater
than0.5 are threshold to1.

We do not detail here the expression for the update steps
of the parameters, details can be found in [8]. Time-domain
source estimates are reconstructed by inverse transform of
the estimated coefficients (inverse MDCT in our case). The
denoised estimation is constructed byx̂ = αV + βU .

4. RESULTS AND DISCUSSION

The aim of this section is to analyze the performances of
the proposed approach for the task of audio denoising. For
the sake of simplicity, we first focus in details on a mono-
phonic signal, theGlockenspiel. We also provide addi-
tional numerical results and examples on short extracts of
polyphonic music. The impact of the various parameters
(tuning, harmonics, and priors settings) is also studied.

4.1 Experimental Setup

In this article, we present results assuming that the tran-
scription is known (notes for the monophonic signal, chords
for the polyphonic signals). The 5 musical excerpts of
various music styles are described in Table 1. Our ap-
proach that incorporates musical priors for modeling the
tonal layer is compared with the one presented in [8].

Table 1. Sound excerpts used for evaluation of the model.
SR: sampling rate.

Name SR (Hz) Duration
Glockenspiel 44100 2s
Misery (Beatles) 11025 11s
Love Me Do (Beatles) 11025 5s
Beethoven String quartet Op.127 - 1 11025 11s
Mozart Piano Sonata KV310 - 1 11025 11s

Parameters: The length of the two MDCT bases are
set to1024 samples for the tonal layer and128 samples
for the transient layer, at a sampling rate of44100Hz, and
respectively to256 and32 samples at a sampling rate of
11025Hz3 . The MMSE and MAP estimates of the param-
eters are computed by averaging the last100 samples of
the Gibbs sampler, run for500 iterations.

Evaluation Measures: Artificial noisy signals are cre-
ated by adding Gaussian white noise to the clean signal
with various input SNRs. The case without additional noise
WN (without noise) corresponds to a separation into two
layerstransient + tonal. Partials are expected to be recov-
ered in the tonal layer while attacks or percussive sounds
will be recovered in the transient layer. The results in terms
of output SNR are summarized in Table 2 and provide an
objective evaluation measure. However, although widely
used for assessing algorithm performances, the SNR is not
a completely relevant measure of distortion for audio sig-
nals. Subjective evaluation by listening to the signals is
also required. The audio excerpts are available at:http:

3 As underlined in [8,14], better results are obtained using avery short
window length for the transients (≈ 3ms). The two window lengths must
be significantly different enough to discriminate between tonals and tran-
sients
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Table 2. Resulting values of output SNRs (dB) for various
input SNRs and without additional Gaussian noise (WN ).

Proposed approach [8] approach
SNR WN 0 10 20 WN 0 10 20
Glockenspiel 71.2 14.1 21.3 28.5 70.2 15.7 22.5 29.2

Misery 42.3 7.0 13.0 20.9 44.4 7.3 13.3 21.1

Love Me Do 28.6 6.8 12.5 19.3 29.6 6.9 12.7 19.4

Beethoven 54.5 8.5 13.6 21.6 54.6 8.9 14.0 21.9

Mozart 62.6 9.3 15.4 23.4 60.9 9.8 15.9 23.9

Computational Performances: The algorithms are im-
plemented in MATLAB and performed on a MacBook Pro
Intel Core 2 Duo clocked at2.4GHz with2GB RAM. The
computation time of the proposed method is similar to the
one obtained with [8],≈ 447 s for processing theGlock-
enspielsignal. The use of MCMC schemes generates high
computational costs.

4.2 Results and Discussion

Concerning the quality of denoising, the results provided in
Table 2 show that our model provides results that are com-
parable to state-of-the-art algorithms in terms of SNR: the
difference between the presented method and the [8] are in
general lower than1 dB. However, noticeable differences
may be perceived while listening to the sound files.

The main interest of the proposed model lies in the mod-
eling of the tonal layer. Fig. 3 shows significance maps of
the selected atoms (MAP estimates) for theGlockenspiel
signal, in theWN case. As can be seen, the use of musi-
cal priors yields to a structure that better reflects the music
content of the signal compared to the approach that uses
physical priors. The resolution of the tonal significance
map is sharper. The partials of the notes clearly appear
as thin horizontal lines and the beginning of the notes is
very clear. One can also see that our method using musical
priors provides sparser estimates of the significance map.

It should be noticed that, especially under low-input
SNRs conditions, one may perceive some artifacts in the
reconstructed signal with the method we propose. They are
probably due to the fact that some high frequencies are cap-
tured by the transient basis rather than by the tonal basis.
Future works should concentrate on modeling structured
priors for the transient layer that are more adapted to the
one proposed here for the tonal layer. However, in spite of
these artifacts, one can find by listening to the signals that
the sound of the reconstructed signals relying on musical
priors is often “richer” than the one obtained with the ap-
proach used in [8]. Fig. 4 shows the significance maps of
the selected atoms (MMSE estimates) for theMozart sig-
nal, in the caseSNRin = 10dB. Again, the partials of the
notes are better discriminated using musical priors, espe-
cially in low frequencies.

Indicator Variable Prior Set-up: The valuepton in
Eq. (7) has an effect on the above-mentioned artifacts pro-
duced by our model in low-input SNRs conditions. For
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Figure 3. Significance maps of the tonal and transient
bases (MAP estimates) for theGlockenspielexcerpt, case
WN . Top: approach [8]. Bottom: proposed approach.

instance, settingpton to 0.99 instead of0.9 in the case
of theGlockenspielsignal allows reducing the artifacts for
SNRin = 10dB. However, our experiments show that in-
dicator variables corresponding to atoms that do not be-
long to the chord must not be set to0. Settingpton to 1
results in reconstructed signals of very “poor” sound, as it
can be assessed by listening tests. Output SNRs are also
degraded. Settingpton < 1 allows taking into account im-
perfections of the chromagram given as input of the hybrid
model (temporal imperfections due to windowing, discrep-
ancy between the ideal model and reality,etc.).

Impact of Tuning: Integrating tuning information in
the model does not lead to improvement in terms of output
SNR values, but yields to estimated significance maps that
are more coherent with our model. Indeed, the “tubes”
depend on the tuning and thus, in case of ”bad” tuning, the
atoms are selected within the correct frequency regions.

Impact of Harmonics: We did not find any improve-
ment when adding harmonics in our model. This may be
partially explained by the fact that, in the polyphonic case,
the contribution of a large part of the first 6 higher harmon-
ics of a note is already taken into account in the signifi-
cance map by the other notes. For instance, let us consider
C major chord (C-E-G). The C note generates harmonics E
and G. E and G are thus both actual played notes and har-
monics. Their contribution is already partially taken into
account in the significance map in the case of the model
“without harmonics” .
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Figure 4. Significance maps of each basis (MMSE esti-
mates) for theMozartexcerpt, caseSNRin = 10dB. Top:
approach [8]. Bottom: proposed approach.

5. CONCLUSION AND FUTURE WORKS

In this article, we have presented a method for sparse de-
composition of audio signals of music on overcomplete
dictionaries made as union of two MDCT bases. We rely
on previous works that consider dependencies between sig-
nificant coefficients of the expansion. The originality of
our approach is that we incorporate musical priors in the
model. Our approach provides results whose quality cor-
responds to state-of-the-art approaches for the denoising
task, and which show that our model that is adequate to
fairly represent audio signals of music. The main contri-
bution of the article is to show that the musical prior based
on musical knowledge performs as well as more sophisti-
cate prior as HMM and appears to be more “natural”. The
significance map corresponding to the tonal layer is coher-
ent with the intrinsic content of music audio.

Future work will concentrate on fully integrating in the
model chord estimation in an interactive fashion. The chro-
magram could be updated with the other parameters during
MCMC inference in order to possibly improve the chord
estimation. The prior we propose has a great potential of
improvement in the future (for example, by using a time
segmentation, a larger chord lexicon etc.)

As far as we know, the introduction of musical priors in
hybrid models for spare decomposition is novel. The use
of mid-level representation of audio - such as the chroma-
gram, as proposed in this paper - or scores, if available,
could be extended to many applications such as denoising,

source separation, compression, coding and many others.
Usually, only physical and mathematical criteria are taken
into account. We believe that the use of musical informa-
tion opens new interesting perspectives.
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